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Lyso-phosphatidylethanolamine (LPE) is a minor membrane 
glycerolipid and egg-derived 18:0-LPE is used commercially 
as a plant bio-regulator to improve plant product quality. 
Physiological responses initiated by LPE treatment included 
delayed senescence in leaves and fruits, improved shelf-life 
of products post harvest, and mitigation of ethylene-induced 
process. However, the biochemical and molecular mechanisms 
underlying LPE-induced responses in plants and harvested plant 
parts remain unclear. In this paper, commentary is presented on 
the effects of LPE at the biochemical level in an effort to develop 
a mode of action. Implications, although tentative, are that LPE 
exerts its effect via lipid-protein interaction to attenuate ethylene 
(ETH)-mediated responses and impact pathogenesis-related 
proteins which together delay senescence progression.

In all plant production systems from nursery to greenhouse/
field, product harvest and packing, transport and storage, to resale 
and final consumption an important criterion is the ability to 
manage the senescence processes. Senescence occurs intrinsically 
as a normal part of the course of plant and plant product devel-
opment but can be induced by extrinsic factors such as climate 
change, stress (nutrient, water, light, temperature, etc.,), pests and 
pathogens, mechanical events (harvest, transport, storage, etc.,), 
and at any point in the production chain. In fact productivity 
of any biological system, however measured and evaluated, is 
constrained by the time to onset of senescence. Once initiated, 
reserve mobilization and nutrient cycling which are integral 
components of the plant senescence process, are for the most part 
irreversible. It is the irreversibility of senescence that compromises 
crop production and product quantity/quality. Since senescence is 

an inevitable event most studies have concentrated on the devel-
opment of management mechanisms to mitigate its deleterious 
effects at every step in the production chain. These include use and 
selection of appropriate cultivars with the desired traits, manage-
ment of light penetration and utilization, control of fertilizer and 
irrigation schedules, use of fungicides and pesticides, and applica-
tion of synthetic and natural plant bio-regulators. Post harvest, the 
use of step-down temperature acclimation, controlled atmosphere 
storage, inhibition of ethylene (ETH) production and/or sensi-
tivity and prevention of pathogen proliferation have all yielded 
positive results. More recently, the introduction of molecular 
biology has seen the emergence of technologies based on autoregu-
lated cytokinin production and/or the stay-green phenotype both 
of which cause senescence delay and appear to improve product 
yield and quality.1-3

Both intrinsic and extrinsic stimuli are coupled to response 
mechanisms wholly or at least in part through changes in phos-
pholipid turnover and metabolism. In particular, changes in 
phosphoinositides, phosphatidic acid (PA), diacylglycerol pyro-
phosphate, lyso-phospholipids, and phospholipases A2, C and 
D are amongst the key lipid signaling components affected.4 
Lyso-phospholipids are present in biological membranes in trace 
amounts and levels of these change rapidly and dramatically on 
exposure of plants to a range of biotic and abiotic stimuli. Lyso-
phosphatidylethanolamine (LPE), a minor glycerolipid present 
in extra-chloroplastic membranes, is formed from the parent 
phospholipid, phosphatidylethanolamine (PE) by the action of 
phospholipase A2. Although several molecular species of LPE have 
been identified as endogenous plant compounds (e.g., 16:0, 16:1, 
18:1, 18:2 and 18:3)5 only the 18:0 species has been used to study 
the effect of exogenous LPE on plant developmental processes.

PA, and Not PLD, is the Signalling Intermediate Affected by 
LPE

Treatment of plants and plant parts with 18:0-LPE delays 
fruit softening when used postharvest, mitigates the defolia-
tion action of ethephon, and delays leaf and fruit senescence in 
tomato, cranberry, potato and grape.6-9 Based on these and other 
similar observations a specific role for LPE as a mediator of aging 
and senescence processes in plants and plant parts was proposed. 
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In fact, it was argued that the decrease in electrolyte leakage in 
LPE-treated leaves and fruits postharvest arose as a consequence 
of the protective effects of LPE on membrane integrity by inhi-
bition of lipid breakdown. Furthermore, in view of reports that 
PLD activity increased with senescence progression and that PLD 
activity together with leaf senescence were stimulated by abscisic 
acid (ABA) but attenuated by kinetin, it was mooted that a poten-
tial mode of action of LPE might be inhibition of PLD. Detailed 
biochemical investigations suggested LPE-specific inhibition of 
PLD (presumably PLDα) activity, an enzyme involved in the 
selective degradation of membrane phospholipids.10 Inhibition 
of PLD activity in these crude cell-free extracts was concentration 
dependent and increased with length and desaturation of the LPE 
acyl chain. Although lyso-phosphatidylinositol also inhibited PLD 
activity in vitro, other lyso-phospholipids such as lyso-phophatidyl-
serine, lyso-phosphatidylglycerol, and lyso-phosphatidic acid did 
not. It was also demonstrated that 18:0- and 18:1-LPE were potent 
inhibitors of ETH production and delayed senescence in cranberry 
fruit whereas the 14:0- and 16:0-chemical species displayed little 
or no effect. The authors concluded that lyso-phospholipids such as 
LPE are catabolites of hormone-activated PLA2 and that they likely 
serve a second messenger function in plants to modulate activity of 
PLD. Circumstantial evidence to support this hypothesis emerged 
from studies using tomato expressing antisense PLDα in which 
the ETH climacteric was delayed and fruits showed increased firm-
ness and red color.11 Precisely the same responses were observed 
following application of LPE to tomato fruit.12

Unfortunately corroborative evidence for the above conclu-
sion was not readily forthcoming. Also, several reports refuted 
the existence of PLD inhibitors and in particular that of LPE in 
this role. Lastly, pharmacological studies demonstrated that PLD 
activity or more accurately PA, plays a pivotal role in cytokinin 
signaling and thus in senescence delay.13 Using a fusion of the 
cytokinin-responsive ARR5 gene promoter and the GUS reporter 
gene it was shown that reporter gene activity in PARR5-GUS 
Arabidopsis seedlings was specific for cytokinin and was attenuated 
by n-alcohols. This particular study provided strong support for PA 
as the primary signaling molecule particularly as n-alcohols, which 
stimulate rather than inhibit PLD activity cause accumulation of 
phosphatidylalcohols and not PA, reduced GUS activity and ARR5 
transcript accumulation.

A Role for LPE in the Mitigation of Senescence Progression

To account for the senescence-delaying effects of exogenous 
LPE it seemed more likely therefore that LPE interacted either 
with the product of PLDα-catalyzed reactions, PA, or with down-
stream targets of PA to slow fruit ripening and promote senescence 
delay. To investigate this possibility more rigorously we chose to 
screen for potential LPE target proteins using a modified radish 
cotyledon bioassay. By manipulating the time to onset of senes-
cence and by eliminating the confounding influence of wounding 
a range of senescence-associated enzymes (and their metabolic 
products) was analysed.14 Results showed that exogenous LPE 
routinely induced activity of phenylalanine ammonia lyase (PAL) 
and acid invertase, (INV). More detailed studies revealed that the 

response was dose dependent. Also, the rise in PAL activity coin-
cided with a decline in phenolic acid content and a rise in sinapine 
and lignin. Increased insoluble Ac INV by comparison occurred 
coincident with a reduction in sucrose concentration while levels 
of glucose and fructose were unaffected. Thus, and based on the 
LPE-induced change in sucrose/hexose ratio, it was proposed that 
applied LPE acts to co-ordinate carbohydrate partitioning locally 
to fulfil anabolic respiratory requirements usually associated with 
the propagation of systemic wound and stress responses.15

Source-sink relations and reserve mobilization are key processes 
in both developmental and stress-induced ontogenic transitions 
and in the senescence process.16 Generally speaking, allocation of 
resources is governed by changing metabolic gradients established 
by supply and demand that arise as a consequence of the dynamic 
between anabolic and catabolic respiratory processes. Of the carbo-
hydrate-metabolizing enzymes, Ac INV contributes significantly 
to increased sugar availability for the establishment of metabolic 
sinks17-19 it has been identified as an integral component of the 
molecular mechanism of cytokinin-mediated senescence delay20 
and activity is induced on exposure of tissue to LPE.15

PA is apparently involved in the induction of cell death but 
almost nothing is known about its role in senescence. If we assume 
that senescence is similar to programmed cell death and that the 
two are fully synchronous as suggested by van Doorn and Woltering 
21 it could be argued that PA is central to both. The significance 
here is that lyso-phospholipids possess detergent-like activity and 
application of LPE to plant tissues could elicit a wound-like 
response to increase the tissue concentration of PA both locally 
and systemically and enhance senescence progression. Using a 
modified leaf-disc bioassay we were able to demonstrate that 
exogenous PA initiates a type of programmed cell death-associated 
leaf senescence and that endogenous PA is indeed an intermediate 
in hormone-mediated (i.e., ABA and ETH) senescence progres-
sion.22 LPE was unable to reverse senescence induced by either 
ABA or ACC (the immediate precursor to ETH). However, 
exogenous LPE completely reversed PA-induction of phosphati-
dylglycerol hydrolase and chlorophyllase, negated the PA-induced 
decline in activity of total Ac INV by increasing activity of both 
the soluble and insoluble forms of this enzyme. Together, these 
observations indicate that LPE-induced senescence-delay arises 
by a pathway or process distinct from phytohormone-induced 
senescence progression initiated by either ABA and/or ETH and 
mediated in part by PA.

Towards a Mechanism of Action for LPE

As outlined above a characteristic feature of LPE treatment 
of plant tissues is induction of Ac INV activity. Phenylalanine 
ammonia lyase is another enzyme typically induced by LPE treat-
ment. Both Ac INV and PAL are important metabolic enzymes 
and pathogenesis-related proteins which would seem to indicate 
that the senescence delaying effect of LPE arises as a consequence 
of the initiation of plant defense responses which are manifest by 
increases in activity of these enzymes, anabolic metabolism and 
lignin formation.15,22 Another characteristic feature of LPE-treated 
tissues is the reduction in ETH production and repression of 
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interact with the ETH receptors. Some are agonists that mimic 
ETH whereas others are antagonists and prevent ETH action by 
blocking receptor signalling. Binding of PA to CTR1 which blocks 
its interaction with ERT1 leading to ETH responses and acyl-
CoA ester binding by acyl-CoA-binding proteins which facilitates 
interaction with the ETH-responsive element binding protein, 
AtEBP25 may offer clues to the molecular mechanism of action of 
LPE. This is supported by recent observations that the functional 
role of an enzyme can be switched via interaction with a specific 
lyso-phospholipid.26 In addition, LPE displays chaperone-like 
properties and like molecular chaperones promotes the functional 
folding of citrate synthase and α-glucosidase in E. coli and prevents 
the aggregation of citrate synthase following exposure to heat 
stress,27 which suggests that LPE can and does affect the structure 
and function of proteins.

Conclusion and Perspective

Accumulating evidence suggests an ever expanding role for 
the phospholipids and lyso-phospholipids in plant cell signaling 
processes and in a variety of response mechanisms. Thus, it is 
perhaps not surprising that commercial agriculture has investigated 
and developed individual phospholipids and mixtures of phospho-
lipids and lyso-phospholipids as potential plant bio-regulators. As is 
the situation for all synthetic and natural plant growth regulators, 
a mode of action is required to facilitate implementation and use 
of these as crop management tools.

It is now well established that LPE treatment delays progres-
sion of leaf and fruit senescence, enhances fruit quality (e.g., fruit 
colour and firmness), and decreases susceptibility to abiotic and 
biotic stresses. Central to these responses is induction of pathogen-
esis-related proteins and in particular Ac INV and attenuation of 
ETH action. The molecular mechanism responsible seems to be 
lipid-protein interaction but this requires validation and proteomic 
characterization of the full spectrum of LPE target proteins. Finally, 
without some knowledge and understanding of a mode of action 
for exogenous LPE it is difficult to address aspects of specificity of 
response. Nonetheless, an important aspect in our opinion which 
requires investigation is LPE-induced PA formation. Specificity of 
LPE we believe can then be addressed with confidence in respect 
of PA-induced senescence-like programmed cell death, ethylene 
synthesis and action, and increased activity of pathogenesis-related 
proteins such as Ac INV.
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by treatment of plant tissues with LPE. Application of LPE or formation of 
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